Приложение

Паскаль-программа "Расчет характеристик холостого хода асинхронного двигателя и разделение потерь"

(см. далее графики на с. 32)

{Эта Паскаль-программа обеспечивает расчет характеристик холостого хода асинхронного двигателя и разделение потерь холостого хода

Исходные данные (см. табл.1.2, графа Измерение) считываются из файла data.XX.

Файл data.XX формируется (редактируется) пользователем.

Результаты расчета характеристик холостого хода

: integer;

(табл.1.2, графа Расчет) помещаются в файл result.XX.

Результаты расчета для разделения потерь холостого хода (табл.1.2, графа Расчет) помещаются в файл **power.XX**.

Файлы result.XX и power.XX создаются турбосредой.

Обозначения физических величин (переменных), которые приняты в учебной литератере по курсу Электрические машины и в Паскаль-программе, совпадают)

```
uses crt:
var i, n
```

```
fi, fo1, fo2: text;
   Ux, Ux2, IAx, IBx, ICx, PAx, PBx, PCx,
   Ix, Ifx, Px, CosFix, pe1, Sum p: array[1..30] of real;
   R1 20, R1 75 : real;
begin
clrscr;
assign(fi, 'c:\zei\tp 7\ad\data.XX');
                                       reset(fi);
assign(fo1,'c:\zei\tp_7\ad\result.XX'); rewrite(fo1);
assign(fo2,'c:\zei\tp 7\ad\power.XX'); rewrite(fo2);
```

Паскаль-программа обеспечивает расчет'); writeln(fo1,'характеристик холостого хода асинхронного двигателя');

writeln(fo1,' и разделение потерь холостого хода'); ========:); writeln(fo1,'

write('1. ВВЕДИТЕ число точек на экспериментальной зависимости n = '); read (n);

{Считывание исходных данных из файла data.XX}

for i := 1 to n do

writeln(fo1.'

read(fi,Ux[i], IAx[i], IBx[i], ICx[i], PAx[i], PBx[i], PCx[i]); read(fi,R1 20);

```
{Определение сопротивления фазы обмотки статора
при расчетной рабочей температуре двигателя}
R1_75 := R1_20*(235 + 75)/(235 + 20);
{Расчет характеристик холостого хода
и разделение потерь}
for i := 1 to n do begin
Ix[i] := (IAx[i] + IBx[i] + ICx[i])/3; Ifx[i] := Ix[i]/sqrt(3);
Px[i] := PAx[i] + PBx[i] + PCx[i];
CosFix[i] := Px[i]/(sqrt(3)*Ux[i]*Ix[i]);
pe1[i] := sqr(lx[i])* R1_75;
Sum p[i] := Px[i] - pe1[i];
Ux2[i] := sqr(Ux[i])
          end:
{Вывод результатов в файл result.XX}
{Вывод результатов в файл power.XX,
этот файл предназначен для геометрической интерпретации
и разделения потерь на магнитные и механические
writeln(fo1,'
              ФАИЛ С РЕЗУЛЬТАТАМИ РАСЧЕТА');
writeln(fo1);
writeln(fo1, 'Таблица 1.2, графа "ИЗМЕРЕНИЕ"');
writeln(fo1, ' (исходные данные)');
writeln(fo1, '-----');
writeln(fo1, '
writeln(fo1, 'Ux IAx IBx ICx PAx PBx
                                        PCx');
writeln(fo1, '-----');
writeln(fo1, 'B A A A
                                         Вт');
                             Вт Вт
writeln(fo1, '-----');
for i := 1 to n do
writeln(fo1, Ux[i]:3:0,' ',IAx[i]:3:1,' ',IBx[i]:3:1,' ',
ICx[i]:3:1,' ',PAx[i]:4:1,' ',PBx[i]:4:1,' ',PCx[i]:4:1);
writeln(fo1, '-----');
writeln(fo1);
writeln(fo1, '
           Продолжение табл. 1.2, графа "РАСЧЕТ");
writeln(fo1, '(результаты расчета характеристик холостого хода)');
writeln(fo1, '-----');
writeln(fo1. ' lx
               Рх CosFix Iфх рэ1 р_мг+р_мх
                                                      Ux2'):
writeIn(fo1, '-----
writeln(fo1, 'A BT - A BT
                                             Вт
                                                     B2 ');
writeIn(fo1, '-----
for i := 1 to n do begin
writeln(fo1,lx[i]:3:1,' ',Px[i]:5:1,' ',CosFix[i]:4:3,' ',
Ifx[i]:3:1,' ',pe1[i]:5:1,' ',sum_p[i]:5:1,' ',Ux2[i]:7:1);
writeln(fo2, Ux2[i], sum p[i]) end;
```

```
writeIn(fo1, '-----'); writeIn(fo1,'Сопротивление фазы обмотки статора R1_75 = ',R1_75:6:3,' Ом'); writeIn(fo1); writeIn(fo1,'Copyright, кафедра Электроснабжение с.х.'); writeIn(fo1,' и Электрические машины, МГАУ, Москва.'); writeIn(fo1,'Паскаль-программу составил профессор Е.И.Забудский '); writeIn(fo1,'19 ноября 2000 года.'); close(fi); close(fo2) end.
```

Примечание:

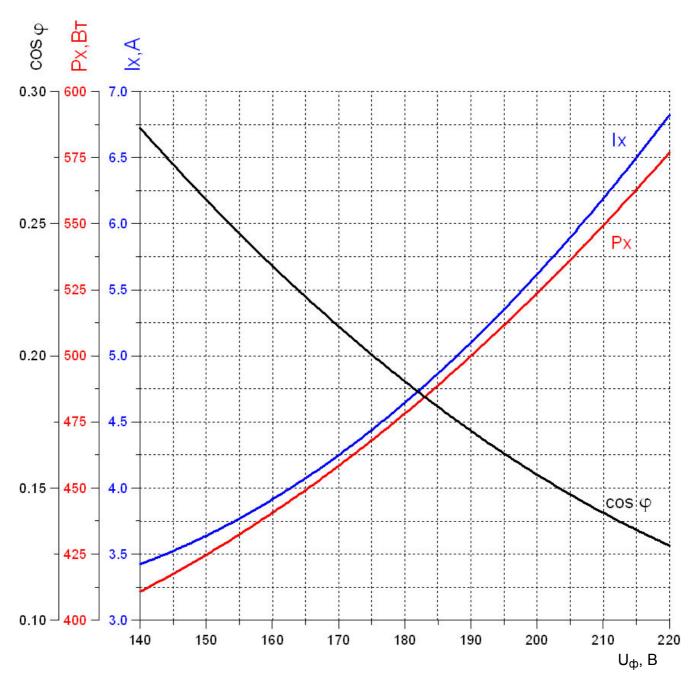
- 1. Паскаль-программа "Расчет характеристик холостого хода асинхронного двигателя и разделение потерь" (файлы XX.pas и XX.exe) реализована на компьютерах Вычислительной лаборатории кафедры Электроснабжение сельского хозяйства и Электрические машины.
- **2.** Перед запуском программы на выполнение необходимо отредактировать текст файла **data.XX** в соответствии с выполненным экспериментом (таблица 1.2, графа "Измерение").
- 3. Результаты расчета помещаются турбосредой в файл **result.XX** (см. с.31).
- **4.** B файле **power.XX** расположена табулированная зависимость $p_{MZ} + p_{MX} = f(U_x^2)$.
- 5. Для расчета других характеристик студентам рекомендуется составить компьютерные программы (аналогично вышеприведенной) самостоятельно.

ФАЙЛ С РЕЗУЛЬТАТАМИ РАСЧЕТА характеристик холостого хода асинхронного двигателя и разделения потерь холостого хода

Таблица 1.2, графа "ИЗМЕРЕНИЕ" (исходные данные)

Ux	IAx	IBx	IC	x PAx	PBx	PCx
В	A	A	A	Вт	Вт	Вт
140	3.3	3.4	3.5	130.0	140.0	140.0
160	3.9	4.0	4.0	145.0	150.0	145.0
180	4.7	4.7	4.7	160.0	165.0	160.0
200	5.5	5.6	5.5	170.0	175.0	170.0
220	6.9	6.9	6.8	200.0	200.0	180.0

Продолжение табл. 1.2, графа "РАСЧЕТ" **(результаты расчета)**


Ix	Px	$\cos \varphi_{\chi}$	Іфх	$p_{\ni I}$	$p_{M2} + p_{MX}$	U_x^2
A	Вт	-	A	Вт	Вт	B^2
4.0 4.7 5.5	485.0 515.0	0.497 0.402 0.332 0.269 0.222	2.3 2.7 3.2	21.1 28.5 40.0 55.8 86.0	388.9 411.5 445.0 459.2 494.0	19600.0 25600.0 32400.0 40000.0 48400.0

Сопротивление фазы обмотки статора $R_{I(75^{\circ})} = 1.824 \text{ Ом}$

Copyright ©, кафедра Электроснабжение с.х.

и Электрические машины, МГАУ, Москва.

Паскаль-программу составил профессор Е.И.Забудский 19 ноября 2000 года.

Характеристики холостого хода асинхронного двигателя